The role of Glu87 and Trp89 in the lid of Humicola lanuginosa lipase.

نویسندگان

  • M Martinelle
  • M Holmquist
  • I G Clausen
  • S Patkar
  • A Svendsen
  • K Hult
چکیده

The importance of Glu87 and Trp89 in the lid of Humicola lanuginosa lipase for the hydrolytic activity at the water/lipid interface was investigated by site-directed mutagenesis. It was found that the effect on the hydrolytic activity upon the replacement of Trp89 with Phe, Leu, Gly or Glu was substrate dependent. The Trp89 mutants displayed an altered chain length specificity towards triglycerides, with a higher relative activity towards triacetin and trioctanoin compared with tributyrin. Trp89 was shown to be less important in the hydrolysis of vinyl esters compared with ethyl esters and triglycerides. An exclusive effect on the acylation reaction rate by the mutation of Trp89 was consistent with the data. It is suggested that Trp89 is important in the process of binding the acyl chain of the substrate into the active site for optimal acylation reaction rate. The Trp89Phe mutation resulted in an increased hydrolytic activity towards 2-alkylalkanoic acid esters. This is suggested to be due to reduction of unfavourable van der Waals contacts between Trp89 and the 2-substituent of the substrate. Thus, in contrast to natural substrates, Trp89 has a negative impact on the catalytic efficiency when substrates with bulky acyl chains are used. In contrast to the Trp89 mutations, the effect on the hydrolytic activity of the Glu87Ala mutation was almost substrate independent, 35-70% activity of wild-type lipase. A reduction of both the acylation and deacylation reaction was consistent with the data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluorescence spectroscopic characterization of Humicola lanuginosa lipase dissolved in its substrate.

The conformational dynamics of Humicola lanuginosa lipases (HLL) and its three mutants were investigated by steady state and time-resolved fluorescence spectroscopy in two different media, aqueous buffer and the substrate triacetin. The fluorescence of the four Trps of the wild-type HLL (wt) reports on the global changes of the whole lipase molecule. In order to monitor conformational changes s...

متن کامل

Conformational lability of lipases observed in the absence of an oil-water interface: crystallographic studies of enzymes from the fungi Humicola lanuginosa and Rhizopus delemar.

Considerable controversy exists regarding the exact nature of the molecular mechanism of interfacial activation, a process by which most lipases achieve maximum catalytic activity upon adsorption to an oil water interface. X-ray crystallographic studies show that lipases contain buried active centers and that displacements of entire secondary structure elements, or "lids," take place when the e...

متن کامل

Impact of the tryptophan residues of Humicola lanuginosa lipase on its thermal stability.

Thermal stability of wild type Humicola lanuginosa lipase (wt HLL) and its two mutants, W89L and the single Trp mutant W89m (W117F, W221H, and W260H), were compared. Differential scanning calorimetry revealed unfolding of HLL at T(d)=74.4 degrees C whereas for W89L and W89m this endotherm was decreased to 68.6 and 62 degrees C, respectively, demonstrating significant contribution of the above T...

متن کامل

Molecular Cloning and Characterization of a Lipase from an Indigenous Bacillus pumilus

Cloning and sequencing of a lipase gene from an indigenous Bacillus pumilus, strain F3, revealed an open-reading frame of 648 nucleotides predicted to encode a protein of 215 residues. Sequence analysis showed that F3 lipase contained a signal peptide composed of 34 amino acids with an H domain of 18 residues. A tat-like motif was found in the signal peptide similar to some other Bacillus pumil...

متن کامل

Surfactant enhanced lipase containing films characterized by confocal laser scanning microscopy.

Confocal laser scanning microscopy (CLSM) in combination with a fluorescently labeling enzyme dye, LavaPurple™, was demonstrated as a technique for the visualization of Thermomyces (Humicola) lanuginosa lipase (LIP(HLL)) and Candida antarctica lipase A (LIP(CA)) within a transparent latex coating. Addition of Teric Surfactants (C(16) non-ionic Teric 475, 1.8% (w/w) or C(10) non-ionic Teric 460,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein engineering

دوره 9 6  شماره 

صفحات  -

تاریخ انتشار 1996